baner firmy microsoft zachęcające do kursu ai
Atotech Poland sp. z o. o. logo

Atotech Poland sp. z o. o.

Machine Learning Engineer

Poznań
IT
Praca
2+ lata doświadczenia
Poznań
IT
Praca
2+ lata doświadczenia
Hybrydowo
Umowa o pracę

Ustaw powiadomienia

Zapisz się i otrzymuj oferty pracy według wybrancyh kryteriów

🤓 Skrócony opis

Oferta idealna dla: osób z obszaru Informatyka i technologie, Nauki przyrodnicze

Rozwijaj modele ML do predykcyjnego utrzymania i detekcji anomalii. Będziesz zajmować się przygotowaniem danych, trenowaniem i optymalizacją modeli, a także ich wdrażaniem i monitorowaniem w środowisku produkcyjnym.

To szansa na pracę z najnowszymi algorytmami i frameworkami ML, w tym TensorFlow i PyTorch, oraz na współpracę z doświadczonymi specjalistami.

Wymagana jest znajomość Pythona/R oraz baz danych SQL/NoSQL, a także biegła znajomość angielskiego.

Najciekawsze: Możliwość zaangażowania w MLOps i badania nad przełomowymi rozwiązaniami ML.

Pełny opis

Your responsibilities

  • ML Model Development: Design, develop, and implement machine learning models based on requirements and real-world data, focusing on predictive maintenance and anomaly detection.

  • Data Preprocessing and Feature Engineering: Perform thorough data collection, cleaning, transformation, and feature engineering to prepare datasets for model training and evaluation.

  • Model Training and Evaluation: Train and optimize machine learning models, utilizing various algorithms and frameworks. Evaluate model performance using appropriate metrics and techniques.

  • Model Deployment and Integration: Deploy ML models into production environments and ensure seamless integration with existing systems and applications.

  • Model Monitoring and Maintenance: Implement monitoring strategies for deployed models to track performance, detect drift, and ensure ongoing reliability. Maintain and update models as needed.

  • Algorithm Research and Selection: Stay up-to-date with the latest advancements in machine learning research and evaluate new algorithms and techniques for potential application within DFS solutions.

  • Collaboration: Work closely with data scientists, software developers, product managers, and other stakeholders to understand requirements, provide technical insights, and ensure the successful delivery of ML-powered products.

  • MLOps Involvement: Collaborate with MLOps engineers to streamline the ML lifecycle, including continuous integration, continuous delivery, and automated testing of ML models.

  • Performance Optimization: Identify and implement optimizations for ML models and pipelines to improve efficiency, scalability, and resource utilization.

  • Knowledge Sharing: Stay up to date with the latest ML methodologies, tools, and best practices, and share knowledge with the team.

Our requirements

  • 3+ years of experience in machine learning engineering or a related field with a strong foundation in model development, deployment, and MLOps, and an interest in cutting-edge ML research.

  • Bachelor’s or Master’s degree in computer science, Machine Learning, Statistics, or a related quantitative field, or equivalent experience.

  • Proven experience as a Machine Learning Engineer with a focus on practical model development and deployment.

  • Demonstrated ability to effectively design, implement, and evaluate machine learning solutions.

  • A proactive attitude and a willingness to learn and contribute to advanced ML initiatives and research.

  • Machine Learning Expertise: Proven ability to design, develop, and deploy machine learning models for various applications, with a focus on predictive analytics.

  • Programming Languages: Strong proficiency in programming languages commonly used in ML (e.g., Python, R). Experience with C++ is a plus.

  • ML Frameworks: Experience with popular machine learning frameworks and libraries (e.g., TensorFlow, PyTorch, Scikit-learn).

  • Data Handling: Strong understanding of data manipulation and analysis techniques, including SQL and NoSQL databases.

  • Analytical and Problem-Solving Skills: Ability to analyze complex problems, identify appropriate ML solutions, and troubleshoot model-related issues effectively.

  • English Proficiency: Ability to read and write technical documentation and communicate effectively with colleagues in English.

  • Interest in MLOps: A strong desire to learn and contribute to MLOps practices and infrastructure.

Optional

  • Experience with cloud platforms (e.g., AWS, Azure, Google Cloud) for ML deployment.

  • Familiarity with containerization technologies (e.g., Docker, Kubernetes).

  • Experience with big data technologies (e.g., Spark, Hadoop).

  • Familiarity with Agile development methodologies (e.g., Scrum, Kanban).

  • Domain Knowledge: Familiarity with industrial automation and/or predictive maintenance applications.

  • Polish/Russian language skills.

Atotech Poland sp. z o. o.

Finanse / Bankowość, Inne, Obsługa Klienta
Hybrydowo
Umowa o pracę

Ustaw powiadomienia

Zapisz się i otrzymuj oferty pracy według wybrancyh kryteriów

Podobne oferty pracy

Machine Learning Engineer